
MICRO-517 Lecture 5-6 Homework 

1. Design of a Landscape Lens 

1.1 Theory 

We now consider the design of a single lens, the landscape lens. Clearly, we cannot correct 

chromatic aberrations in this case; the only thing that is possible is to select a glass with low 

dispersion (high V value). 

Assume we wish to have a focal length of 100 mm ( 0.01K =  mm-1), an aperture of 4.00h =  

mm, and a field angle of 20w=   (see Figure 1). This left us two degrees of freedom: stop position 

and bending. 

 

Figure 1. Layout of the landscape lens. 

The first four Seidel coefficients of a thin lens at the stop are 
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are coefficients, H hw=  is the Lagrange invariant, ( ) ( )1 2 1 2B c c c c= + −  the shape factor, 1c , 2c  

the surface curvature, ( ) ( )G s s s s = + −  the position factor, s , s  the object and image distance. 



The low refractive index, low dispersion glass N-BK7 ( 1.515n = , 64V = ) is a good choice for this 

lens. This leads to the coefficients of 1 8.78 = , 2 12.89 = , 3 4.32 = , 4 8.65 = , 5 3.22 = , and 

6 2.66 = . For object located at infinity, we have a position factor of 1G = − . 

In the case of a landscape lens, the stop is located at a remote location. Applying the stop 

shift equation to find the aberration with a stop away from the lens, we have 
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where h wt=  is the height of the chief ray, 20w=   is the field angle, t  is the distance from the 

entrance pupil to the lens, and 4.00h = mm is the height of the marginal ray (determined by the 

size of the entrance pupil). 

By judiciously locating the stop (entrance pupil) by finding the right t , we can make 
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Given that 1G = −  (object at infinity), this becomes 
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This quadratic equation can be solved by plugging in the coefficients we found before. 

Here we note that the solution we found is under thin lens assumption (zero thickness). A 

non-zero thickness must be added with necessary adjustments in the surface curvature to 

maintain the optical power in a surface model for real lens. 

1.2 Design Task 

Let’s complete the design of a single lens as a landscape lens based on the above specifications 

and parameters by solving the quadratic equation of the shape factor B . There are two solutions, 

which represent two different configurations of the system: one with stop in front of the lens and 

the other with the stop behind the lens (Figure 2). For each case you should calculate 1S  and 2S  

in order to find 
h

h
 through the relationship 2

1

Sh

h S
= − . Given known h  and w , h  and t  can be 

found. 



 

 

Figure 2. Two configurations of the landscape lens. 

Although may not be necessary at this point, you may find using spreadsheet software such 

as Microsoft Excel more convenient and efficient than using a calculator. With a thoughtful design, 

such a sheet can be used in the predesign of many lenses. Programming in MATLAB can also 

provide the same convenience. 

1.3 ZEMAX Optimization 

Given the simple structure and the effectiveness of the ZEMAX global optimization, the two 

solutions described above can be found through a direct global search starting with a flat glass 

plate. Follow the procedure below: 

1. Create a new lens design in ZEMAX OpticStudio. Use the default wavelength of 0.55 nm, 

Use “Float by Stop Size” as the aperture type with object at infinity. Define field points at 

angles of 0°, 10°, and 20°. 

2. Insert one stop surface (surface 1) and two flat surfaces (surface 2 and 3). The semi-

diameter of the stop and its distance to the next surface should be set according to the 

first solution above. Use N-BK7 as the glass type with a thickness of 3 mm. Place the image 

plane 100 mm away from surface 3. 

3. Set the radius of surface 2 and 3 and the thickness of surface 2 to be variable. Open the 

Optimization Wizard and set the following: Image Quality “Spot”, Glass Min 2, Max 5, 

Edge Thickness 2. 

4. Run Global Search and wait until the merit function on the right does not change. It should 

not take long. 

5. Save the results and repeat steps 1-4 to find the second solution. 



In this design, the results from the global search should be very good. This is serendipity in ZEMAX 

due to the low degree of freedom in the system. Study the Seidel diagram and see how the 

coefficients from each surface balance each other. Also compare the ZEMAX results with the 

analytical solutions in surface structures and Seidel coefficients. Discuss the origin of the 

difference in the Seidel coefficients if there are discrepancies. 

1.4 Submission 

Submit the calculations and the relevant ZEMAX file. The calculations can be either scanned from 

scratch paper or in Excel or MARLAB file. 

2. Design of an Achromatic Doublet 

2.1 Theory 

The design of doublets is relatively straightforward with a clear procedure. Doublets are used as 

telescope objectives, aplanatic, achromatic or apochromatic. They are also indispensable as 

achromatic modules in two-component and four-component systems, and in micro-objectives. 

Although the original Cooke triplet consisted of single lenses, later members of the triplet family 

comprised doublets. Designing a simple achromatic doublet encompasses many of the tricks and 

pitfalls of optical design. Once you have finalized a design of an achromatic doublet lens, you are 

safe to drive on the highway of optical design. 

A doublet lens is composed of two lens components, one of “crown” glass, a low refractive 

index, low dispersion glass, and the other of “flint” glass, a high refractive index, high dispersion 

glass. Compared with singlets, doublets introduce more degrees of freedom for better correction 

of aberrations. A doublet can simultaneously correct axial chromatic aberration (at two 

wavelengths) and spherical aberration. When coma is also corrected, we have an aplanatic 

doublet. 

2.1.1 Thin Lens Predesign 

With a thin doublet, the correction of axial chromatic aberration (LCA) requires 
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where 1K  and 2K  are the power of the two constituent lenses, 1V  and 2V  are the Abbe number 

of the two glasses, and h  is the height of the marginal ray determined by the size of the entrance 

pupil. The combined power of the doublet is 1 2K K K= + . This leads to the distribution of the 

optical power between the two component lens as 
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in a crown-in-front configuration, and vice versa in a flint-in-front configuration, where 

1 2V V V = −  is the difference in the Abbe number. 

An achromatic doublet lens is corrected for LCA at two wavelengths. A typical chromatic 

focal shift is shown in Figure 3, which is the signature of achromatic doublets and should be used 

to verify the success of a design. The non-zero focal shift at the wavelength in between the two 

corrected wavelengths is termed secondary spectrum, which can be evaluated as 
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Figure 3. Example chromatic focal shift of an achromatic doublet with secondary spectrum. 

Now that we have determined the optical powers 1K  and 2K , we need to correct the 

aberrations, which are functions of the shape factors 1B , 2B  and position factors 1G , 2G . Since 

the position of the object is fixed, let’s determine 1G , 2G  first. With the object located at the 

infinity, at the first lens we have 1s = −  and 1 1 11s f K = = , and thus ( ) ( )1 1 1 1 1 1G s s s s = + − = − . 

At the second lens, the object is at the focal point of the first lens, thus 2 1 11s f K= =  and by the 

lens equation we have ( )2 1 21 1s K K K = + = , which leads to ( ) ( )2 1 1G K K K K= + − . With the 

position factors determined, we can now correct the aberrations using the shape factors 1B , 2B . 

To correct the aberrations, we write 
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are the spherical coefficients for the front and rare lens component, respectively, and 
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are the coma coefficients for the front and rare lens component, respectively. 

An aplanatic doublet must have 1 2 0S S= = . From 2 0S =  we can find a linear relation 

between 1B  and 2B , with which we can eliminate one of the form factors from the equation 

1 0S =  and reach a quadratic equation for 1B  or 2B . The unknown can then be solved. Once 1B  

(or 2B ) is known, 2B  (or 1B ) can be calculated from 2 0S = . For each component lens, the 

curvatures of the doublet can be calculated with 
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where 1,2i = . 

2.1.2 Cemented Doublet 

Although air-spaced doublets enjoy a superior aberration correction and a higher optical damage 

threshold, very often the two component lenses in a doublet are cemented for a “solid” lens with 

lower production cost. In an air-spaced doublet, we have in principle two degrees of freedom 

available for the correction of coma and spherical, namely the bending factors 1B  and 2B . With 

a cemented doublet, 1B  and 2B  are linked together as 
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which follows directly from the requirement of equal curvature at the two surfaces of the 

cementing side, i.e. 2 3c c=  (the cementing condition) and the curvature formula above. We will 

therefore suffer one less degree of freedom by obeying the cementing condition, which results 

in a compromise in the aberration correction. Note, however, with an air-spaced doublet this 

relation will be approximately fulfilled when the airspace is small. 

We therefore have two ways of correcting the doublet: 

▪ Obeying the cementing condition and choosing the glasses in such way that spherical and 

coma are both small enough, or 

▪ Neglecting the cementing condition and correcting spherical and coma. 

With the first method we find the classical Fraunhofer and Steinheil doublets. With the 

second method we also find the Gauss doublet (Figure 4). 

 

Figure 4. An example Gauss doublet. 

2.1.3 Surface Model 

Once the thin lens model has been corrected, we need to give thickness to the lenses to obtain 

a physically sound surface model for real lenses. The addition of thickness, however, will change 

the optical power. We thus need to adjust the surface curvature to maintain the original power. 

To give thickness, we insert a thickness between the first and second surface of each lens. For a 

positive lens, the thickness should be 10–15 % of its diameter, while the edge thickness should 

be larger than 1.5 mm (sharp edges are difficult to make and to mount). For a negative lens, the 

central thickness should be no less than 6 % of the diameter. 

When thickness is added to a lens element, the optical power will change from its designed 

value. To correct the change in optical power (within a single lens element), we calculate the new 

power after thickness insertion as 
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after which the lens with thickness has the same power as the thin lens before the thickness 

insertion, i.e., ( ) ( ) ( ) ( )
1 2

thick thin thin thin
K K K K= = + . 

When the surface model is established with a reasonable starting point, we are set to 

optimize the system. 

2.2 Design Task 

Let’s design an aplanatic doublet lens of an effective focal length 100f =  mm ( 0.01K =  mm-1) 

using the glass pair of N-BK7 and N-SF10. The technical data of these glasses can be found online 

from SCHOTT. We assume in this design that the lens is at the stop with the first surface as the 

pupil, and the aperture semi-diameter is 10h = mm. The object is located at infinity. Use field 

points of 0°, 1°, and 2° and F.d.C. wavelengths. 

Follow the steps below in your design: 

1. Calculate 1K , 2K , 1G , and 2G . 

2. Calculate the µ coefficients for each glass type. You can use the previous values of N-BK7. 

3. Write out the equations 1 0S =  and 2 0S = . Solve the quadratic equations for the shape 

factors 1B  and 2B . Usually a pair of solutions exists. 

4. For each lens, calculate the surface curvature 1c  and 2c . A curvature that is greater than 

5K  is deemed optically unhealthy and should be discarded. 

5. Add a proper thickness to each lens and rescale the parameters to maintain the optical 

power unchanged. 

6. Set up the merit function using the optimization wizard in ZEMAX OpticStudio using spot 

RMS as the criterion and optimize the design. The glass thickness should be constrained 

within 2 – 8 mm with edge thickness no less than 1.5 mm. The air thickness should be 

constrained within 0.1 – 1 mm. Try both air-gapped and cemented cases. You can use the 

pickup solve in the radius field and zero thickness to implement the cemented case. 

2.3 ZEMAX Optimization 

Build the surface model obtained above in ZEMAX and run local optimization to improve the 

performance. Compare the Seidel coefficients with the thin lens model solution. 

Doublet is about the most complex system that can still find a solution through ZEMAX 

global search. Use a pair of parallel plates of 3 mm thick with an air gap of 0.5 mm for a starting 

point and try the global search in ZEMAX OpticStudio for your luck. Compare the results from 

above. 

In both designs, the operand of “AXCL” (axial color) should be added on top of the default 

merit functions generated through Optimization Wizard. Use “1” and “3” in the two wave fields, 

0 for the target, and “1.0” for the weight. This place axial color shift in the merit function for 

optimization. The achromatic performance should be verified using the plot of chromatic focus 



shift. In addition, the operand of “EFFL” (effective focal length) should be added on top of “AXCL” 

with “2” in the wave field and “1.0” in the weight field. You should use 100 mm as the initial guess 

for the image distance, which may not be accurate with the effective focal length specified in the 

optimization. So the “Quick Focus” feature should be used during the first few rounds of 

optimization. 

2.4 Submission 

Submit the calculations and the relevant ZEMAX file. The calculations can be either scanned from 

scratch paper or in Excel or MARLAB file. 

 


